Implicit Polymorphic Type System for the Blue Calculus

نویسندگان

  • Silvano Dal-Zilio
  • Gérard Boudol
چکیده

The Blue Calculus is a direct extension of both the lambda and the pi calculi. In a preliminary work from GGrard Boudol, a simple type system was given that incorporates Curry's type inference for the lambda-calculus. In the present paper we study an implicit polymorphic type system, adapted from the ML typing discipline. Our typing system enjoys subject reduction and principal type properties and we give results on the complexity for the type inference problem. These are interesting results for the blue calculus as a programming notation for higher-order concurrency. Systtme de type polymorphe pour le Calcul Bleu RRsumm : Le Calcul Bleu est une extension directe la fois du pi-calcul et du lambda-calcul. Dans un travail prrccdent, GGrard Boudol donnn un systtme de type simple pour ce calcul qui comprend le systtme de type simple de Curry pour le lambda-calcul. Dans ce rapport, nous tudions un systtme de type implicite et polymorphe qui s'inspire du typage du langage ML. Nous montrons que ce systtme de type posssde les propriitts de subject reductionn et de type principal, ce qui conforte notre opinion que le calcul bleu est un moddle bien adaptt la dddnition d'un langage de programmation concurrent d'ordre suprieur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Practical Programming Language Based on the Polymorphic Lambda Calculus

The value of polymorphism in programming languages has been demonstrated by languages such as ML [19]. Recent e cient implementations of ML have shown that a language with implicit polymorphism can be practical [1]. The core of ML's type system is limited, however, by the fact that only instances of polymorphic functions may be passed as arguments to other functions, but not the polymorphic fun...

متن کامل

Consistent Subtyping for All

Consistent subtyping is employed in some gradual type systems to validate type conversions. The original definition by Siek and Taha serves as a guideline for designing gradual type systems with subtyping. Polymorphic types à la System F also induce a subtyping relation that relates polymorphic types to their instantiations. However Siek and Taha’s definition is not adequate for polymorphic sub...

متن کامل

Matching for the lambda Calculus of Objects

A relation between recursive object types, called matching, has been proposed [8] to provide an adequate typing of inheritance in class-based languages. This paper investigates the role of this relation in the design of a type system for the Lambda Calculus of Objects [15]. A new type system for this calculus is defined that uses implicit match-bounded quantification over type variables instead...

متن کامل

A static semantics for Haskell

This paper gives a static semantics for Haskell 98, a non-strict purely functional programming language. The semantics formally speciies nearly all the details of the Haskell 98 type system, including the resolution of overloading, kind inference (including defaulting) and polymorphic recursion, the only major omission being a proper treatment of ambiguous overloading and its resolution. Overlo...

متن کامل

Type Checking and Inference for Polymorphic and Existential Types

This paper proves undecidability of type checking and type inference problems in some variants of typed lambda calculi with polymorphic and existential types. First, type inference in the domain-free polymorphic lambda calculus is proved to be undecidable, and then it is proved that type inference is undecidable in the negation, conjunction, and existence fragment of the domain-free typed lambd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997